skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Inoue, Kuniaki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A neural network (NN) surrogate of the NASA GISS ModelE atmosphere (version E3) is trained on a perturbed parameter ensemble (PPE) spanning 45 physics parameters and 36 outputs. The NN is leveraged in a Markov Chain Monte Carlo (MCMC) Bayesian parameter inference framework to generate a secondposteriorconstrained ensemble coined a “calibrated physics ensemble,” or CPE. The CPE members are characterized by diverse parameter combinations and are, by definition, close to top‐of‐atmosphere radiative balance, and must broadly agree with numerous hydrologic, energy cycle and radiative forcing metrics simultaneously. Global observations of numerous cloud, environment, and radiation properties (provided by global satellite products) are crucial for CPE generation. The inference framework explicitly accounts for discrepancies (or biases) in satellite products during CPE generation. We demonstrate that product discrepancies strongly impact calibration of important model parameter settings (e.g., convective plume entrainment rates; fall speed for cloud ice). Structural improvements new to E3 are retained across CPE members (e.g., stratocumulus simulation). Notably, the framework improved the simulation of shallow cumulus and Amazon rainfall while not degrading radiation fields, an upgrade that neither default parameters nor Latin Hypercube parameter searching achieved. Analyses of the initial PPE suggested several parameters were unimportant for output variation. However, many “unimportant” parameters were needed for CPE generation, a result that brings to the forefront how parameter importance should be determined in PPEs. From the CPE, two diverse 45‐dimensional parameter configurations are retained to generate radiatively‐balanced, auto‐tuned atmospheres that were used in two E3 submissions to CMIP6. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Observations and theory of convectively coupled equatorial waves suggest that they can be categorized into two distinct groups. Moisture modes are waves whose thermodynamics are governed by moisture fluctuations. The thermodynamics of the gravity wave group, on the other hand, are rooted in buoyancy (temperature) fluctuations. On the basis of scale analysis, it is found that a simple nondimensional parameter—akin to the Rossby number—can explain the processes that lead to the existence of these two groups. This parameter, defined as N mode , indicates that moisture modes arise when anomalous convection lasts sufficiently long so that dry gravity waves eliminate the temperature anomalies in the convective region, satisfying weak temperature gradient (WTG) balance. This process causes moisture anomalies to dominate the distribution of moist enthalpy (or moist static energy), and hence the evolution of the wave. Conversely, convectively coupled gravity waves arise when anomalous convection eliminates the moisture anomalies more rapidly than dry gravity waves can adjust the troposphere toward WTG balance, causing temperature to govern the moist enthalpy distribution and evolution. Spectral analysis of reanalysis data indicates that slowly propagating waves ( c p ~ 3 m s −1 ) are likely to be moisture modes while fast waves ( c p ~ 30 m s −1 ) exhibit gravity wave behavior, with “mixed moisture–gravity” waves existing in between. While these findings are obtained from a highly idealized framework, it is hypothesized that they can be extended to understand simulations of convectively coupled waves in GCMs and the thermodynamics of more complex phenomena. 
    more » « less